
NASA-TM-111485 ' • -:

Dynamic Optimization

PHILIP LAIRD

AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMEs RESEARCH CENTER

MOFFETT FIELD, CA 94025, USA

f_J_A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-92-09

April, 1992

To appear in: Machine Learning

Conference_ July,

Dynamic Optimization

International

1992

Philip Laird"
AI Research Branch

M.S. 269-2

NASA Ames Research Center
Moffett Field, California 94035, U.S.A.

Abstract

We distinguish static and dynamic optimiza-
tion of programs: whereas static optimiza-
tion modifies a program before runtime and is
based only its syntactical structure, dynamic
optimization is based on the statistical prop-
erties of the input source and examples of
program execution. Explanation-based gen-
eralization is a commonly used dynamic op-
timization method, but its effectiveness as a
speedup-learning method is limited, in part
because it fails to separate the learning pro-
cess from the program transformation pro-
cess. This paper describes a dynamic op-
timization technique called a learn-optimize

cycle that first uses a learning element to
uncover predictable patterns in the program
execution and then uses an optimization al-
gorithm to map these patterns into benefi-
cial transformations. The technique has been
used successfully for dynamic optimization of
pure Prolog.

1 Introduction

Program "optimization" is the task of replacing a
program (or planner, theorem-prover, etc.) by a se-
mantically equivalent one with superior performance.
"Semantic equivalence" means that both the original
and the optimized programs compute the same in-
put/output relation. Let us differentiate between two
kinds of optimization: Static optimization methods ap-

ply before program execution; following analysis of the
local and global structure, syntactic forms are replaced
by equivalents that are expected to perform as well or
better, regardless of the input problem. Examples in-
clude the familiar code-optimization methods for com-
pilers. Dynamic optimization, by contrast, uses experi-
ence gained from the actual execution of the program

"Ema2h laird@pluto.axe.nasa.gov

Interpreter lind Learning Element

O_,m,z.r I

(P')

Figure 1: Dynamic Optimization Method

to improve its expected performance on subsequent
runs. Memoization, explanation-based generalization,
and unfold/fold transformations are familiar methods
of dynamic optimization.

Currently most dynamic optimization methods are
based on a "caching" model, whereby individual prob-
lem solutions (possibly after being generalized some-
what) are either remembered or discarded. A diffi-
culty with caching techniques is that the learned in-
formation may sometimes lead to program transfor-
mations that ultimately degrade, rather than enhance,
program performance---particularly with highly recur-
sire programs. Various methods of utility analysis,
e.g., (Gratch and Dejong, 1991; Markovitch and Scott,
1989; Minton, 1989; Shavlik, 1990), have been pro-
posed to address such problems as "expensive chunks"
and "generalization-to-N". The fundamental draw-
back, however, is much deeper: by intertwining the
learning and the transformation processes, the learn-
ing process may never converge, and as a result, find-
ing truly effective transformations can be difficult or
impossible.

The primary contribution of this paper is a new
method--called the learn-optimize cycle--for separat-

ing the learning task from the optimization task. We
consider a model (Figure 1) in which both a source
program P and a source S of problems are the in-
put; the task is to construct an equivalent program P_
whose expected performance is as good as that of P,
and hopefully much better, on problems drawn from
S. A learning element is used to observe a number of
program executions. Naturally, the sample size must
be large enough to detect statistically regular features
in the examples. Then a separate algorithm (the "opti-

mizer") is used to construct a new program that, with
high probability, performs as well or better on S. A
series of such learning and optimizing passes are used

to find a (locally) optimal program.

To test the method, I built a prototype of a dynamic

program optimizer for Prolog programs. I first modi-
fied a Prolog compiler so that compiled programs will
pass information about their execution to a learning
element called a TDAG. I then compiled the target
program and collected data from a set of its execu-
tions, drawing problems from a particular randomized
problem generator. After the learning element had
stabilized, I used the learned data to modify the pro-

gram using two transformation techniques: clause re-
ordering and unfolding. Both techniques are known to
preserve the program semantics (Sterling and Shapiro,
1986; Tamaki and Sato, 1984), so the optimized pro-
gram was equivalent to the original. This learn-
ing/optimization process was then repeated until the
optimizer could find no more transformations. The
performance of the resulting program was then com-
pared to that of the original. Experimental results are
summarized later.

In this paper we first review related work and then de-
scribe briefly the learning element (TDAG) and its ap-
plication to learning Prolog execution properties. We
then show how the optimizer uses the TDAG infor-
mation to modify the source program. Experimental
procedures and results are given, followed by a critique
of this methods with ideas for luther development.

2 Related Work

The objective of this research is to find a practical
way to do speedup learning that rests more solidly
on first principles than I have found in machine-
learning papers. Recent papers, such as (Etzioni, 1990;
Laird, 1991; Laird and Gamble, 1990a; Letovsky, 1990;
Subramanian and Feldman, 1990), have shown how

important the distribution and the order of the exam-
ples is in EBG-based systems and how it affects the
estimates of utility of learned rules. Etzioni, for ex-

ample, noticed that on some domains Prodigy/EBL
(Minton, 1989) was learning rules that could be found
just as effectively, and more efficiently, using a static

learner.

Subramanian and Feldman (Subramanian and Feld-

man, 1990) demonstrated that one could feasibly pre-
dict the utility of certain transformations, and that
unfoldings of only a few levels, instead of the EBG
method of unfolding the entire solution, were worthy
of study. The idea of incorporating costs and proba-
bilities into the TDAG projections was inspired by a
paper by Yamada and Tsuji (Yamada and Tsuji, 1990;
Yamada, 1992), whose analysis showed that online
statistics could be used to avoid utility problems with-
out the need to benchmark each change individually on
a set of example problems as in the Prodigy system.
In recent work (Segre e_ al., 1992) a combination of
optimization methods, including caches and dynamic
reordering, have been applied to the task of improving
the performance of an automated deduction system,
with considerable success.

A number of investigations of how to find an opti-
mal ordering of conjunctive queries have pointed the
way for several researchers to base reorderings on costs
and probabilities. Smith and Genesereth (1985) is a

good example, and Greiner (Greiner, 1989) builds on
these results with some of his EBL-optimlzation work.

Working with Orponen (Greiner and Orponen, 1991),
he has developed this idea into a dynamic optimiza-
tion algorithm for query databases--one that is truly
"optimal" (in the sense of PAC learning), in contrast
to this and other work where "optimize" is a misnomer
for "improve?' To date, however, their analysis applies
to a restricted database, and no implementation of the

algorithm has been reported.

The idea of using learning to devise program speedups
and then to incorporate them into the original source
program was stolen from PROLEARN (Prieditis and
Mostow, 1987), one of the first dynamic program op-
timizers and possibly the first to employ partial eval-
uation techniques effectively. This approach stands
in contrast to the practice of learning "search-control"
rules per se (as in SOAR and Prodigy), without trying
to convert them into program transformations

Gooley and Wah (Gooley and Wah, 1989) investigated
extensively the use of Markov models of execution in
order to speedup Prolog programs. In their transfor-
mations they reordered both the clauses and the sub-
goals within a clause, using costs and probabilities to
determine the best ordering. Furthermore, their aim
was to support optimization of true Prolog, including
cuts and second-order constructs. Learning was not
the focus of their work, nor did they attempt to choose
different orderings at different places in the proof or to

perform unfoldings, but their encouraging results pro-
vided a number of good ideas. Indeed, this work can
be viewed as extending theirs to include clause unfold-

ing and admit reorderings based on context.

3

3 The TDAG

Our optimization method begins with a learning
phase. Almost any algorithm that learns to predict
sequences could be used; we developed the TDAG al-
gorithm, however, expressly for this problem. An ef-
ficient way to learn to predict sequences of discrete
symbols, it has other applications and is discussed in
detail elsewhere (Laird, 1992). Here we shall give only
the main ideas as they apply to Prolog optimization.

Consider an input source that generates a continual
stream of symbols (e.g., "q • b q s s a v s...'),
and suppose we want to learn to predict the next sym-
bol probabilistically (e.g., the next symbol will be q
with probability 0.7 or • with probability 0.24, etc.).
A possible approach is to model the input source as a
Markov model; unfortunately no tractable method for
learning a general family of Markov models is known

(Abe and Warmuth, 1990; Laird, 1988). The TDAG
approach, which draws on ideas from adaptive data
compression (Bell et al., 1990), offers a practical com-
promise that ameliorates many of the theoretical prob-
lems associated with Markov models.

We proceed as follows. Let ai be the i'th symbol to
arrive in the input stream. We define the set of suf-
fixes (at time i) to be the set of i strings, aza2.., ai,
a2...ai, ..., ai-lai, and ai. We can keep a table in
which we count the occurrences of each suffix of the

input as each input symbol is observed. For example,
after observing the four input symbols "a b b b" we
would have a table containing a (1 occurrence), b (3
occurrences), ab (1), bb(2), abb (1), bbb(1), and abbb
(1).

Of course, the size of a table of suffixes grows quite
rapidly--potentially as the square of the number of in-
put symbols--so maintaining such a table is not prac-
tical. But such a table can be used to predict the
probability of the next symbol, as follows. Suppose
that we have seen 100 input symbols so far, and that
the past three input characters were "... a b b'. As-
sume the suffix abb appears in the table with a count of
30 times and that the suffix abba occurs 6 times. This

means that six times out of thirty, the sequence abb
has been followed directly by the character a; hence
we can estimate the likelihood of next seeing an a as

6/30 if we base our prediction for the next character
on the preceding three characters. We could also base
the prediction on the preceding n characters, for any
n from 0 to 99.

Besides predicting the next symbol, we can also com-
pute a prior probability for each suffi in the table.
The prior probability of a suffix S of length k is the

probability that the next k input symbols will be S,
given no information about the preceding characters.
In our example, abb has an estimated probability of

30/97, since it has occurred 30 times out of a total of

100 -- 3 = 97 suffixes of length 3.

This algorithm will remain impractical unless we limit
the growth of the suffix table. Let us do so by re-
moving all suffixes S. x (where S is a string and z a
symbol) for which the prior probability of S is less than
some value 8. The parameter/9 is a positive fraction
chosen by the user on the basis of the amount of avail-
able storage. In the preceding example, if 0 < 30/97,
the table entry abba will be kept; otherwise it will be
discarded. In typical cases the size of the table will
be limited to about O(A0 -1) entries, where A is the

number of distinct input symbols, although periodici-
ties in the input source can still cause the size of the

table to grow without limit. We must, therefore, also
impose an upper limit D to the length of any suffix
stored in the table--a limit that will rarely be reached

in practice.

This also suggests a reasonable way to decide which
suffix to use to predict the the next character: use
the longest suffix S whose count is at least M and for
which there is at least one extension S. x in the table,
where z is a symbol. The parameter M is chosen based
on the desired confidence in the prediction probability.
Other ways to formulate predictions are possible, but
this one is effective, simple, fast, and principled.

We now have an algorithm that is nearly practical.
The only additional improvement is to structure the
table as a tree for efficiency. The root of this tree is
labeled by the empty string; and if the suffix S and its
one-character extension S. x (where S is a string and
z a character) are both in the table, then in the corre-
sponding tree there is an edge from the node labeled
S to node labeled S.x. For example, if abb and abba
are entries in the table, then the node labeled abb will
have among its children a node labeled abba; if there
are no extensions of abb in the table, then abb occurs
as a leaf in the tree.

Luckily there are simple, efficient algorithms (not
given here) for updating the tree as each new input
symbol arrives and for predicting the next symbol
probabilistically. We call the resulting tree a TDAG
and refer to the algorithm as the TDAG learning ele-
ment. It can be shown that the algorithm converges in
the limit to a useful approximation of any Markovian
input source.

For dynamic optimization we shall need to learn from
Prolog proofs, which are trees, not strings. It is easy to
extend the TDAG to learn a class of tree-structured se-

quences called multi-strings. Here each input symbol
z comes with a unique integer > 0 called its multi-

plicity v, which we indicate by writing x_. Formally, a
multi-string consists of a symbol x_ concatenated with
v multi-strings. For example, "a2 co bl e0" denotes
a multi-string in which the symbol a has multiplicity
two and thus is followed by two multi-strings: one con-

sisting of only the symbol e, and one consisting of the

4

multi-string"bl co". Multi-strings are most easily ex-
hibited as ordered trees in which the root node z_ has

as children u subtrees representing the _ multl-strings
that follow z. Note that ordinary strings are just a
special case of multi-strings in which each symbol has
multiplicity one except the last, which has multiplicity
zero. Generalizing the TDAG to learn multi-strings is
easy: just as a string TDAG makes a prediction of
which symbols are most likely to follow the recent in-
put symbol Zl, a multi-string TDAG makes v predic-
tions, one for each of the successors for the most recent
input symbol zv. Converting a TDAG algorithm for
strings into one for multi-strings is a simple matter
of replacing some single-valued elements into arrays of
size v and using a stack to keep track of our depth in
the multi-string.

4 Using a TDAG to learn Clause

Sequences

Logic programs represent search problems in which the
task is to find a clause [C] : H _ T1,T2,... whose
head H unifies with the input goal and whose sub-
goals 2_ (after applying a unifying substitution) are
all refutable. If we can predict which clause should
be chosen for any given goal, then the cost of run-
ning the program is linear in the size of the solution.
Our intention is to use a TDAG to guide us to the

right clauses during the proof. Also, unfolding part
of a proof reduces the size of some solutions and po-
tentially changes the search order. We want to use
a TDAG to tell us which unfoldings will improve the

average cost of solutions, not just the cost of a single
solution. Other program transformations are possi-
ble; we limited our research to these two since they
preserve the semantics of the program, are frequently
performed, and are relatively easy to understand.

Refuting a goal G results in a proof tree (Sterling and
Shapiro, 1986) whose root is the goal G and whose chil-
dren are proof trees for each subgoal generated by a
resolution step. Given the proof tree one can easily de-
rive a clause-name tree, in which each node of the proof
tree is re-labeled with the name C of the clause used
to resolve the goal or subgoal. For example, in Figure
2, we show such a clause-name tree for the three-step

proof of the goal G = p(f(a)) using a program which
will serve as a running example throughout this paper.

The key observation is that a clause-name tree is a
multi-string; therefore sequences of clause-name trees
can be learned using a TDAG. Each clause C has a
fixed number v of terms in its tail; thus each occur-
rence of C in the clause-name tree has v subtrees whose

root nodes are labeled by the names of the clauses

used to resolve the subgoals. Thus the number v of
antecedents in the body of the clause C is its multi-

plicity.

The basic idea is that, by learning from a sequence
of clause-name trees, we simultaneously learn to pre-
dict which clauses will succeed at different points in

the proof. In order to improve program performance,
however, both the likelihood of success and the expected
cost of the effort need to be estimated. Consequently
we shall gather cost information as well as likelihoods
in our TDAG.

The TDAG learning element is used as follows.
First, the target program is changed to an equiv-
alent program in which each clause [C] : H
Tt,T_,... is replaced by a pair of clauses: [C1] :
H _ Tail-T1,Tail-T_ and [C2] : Tail-H
Tail-Tt, Tail-T2,. For example, the program in Fig.
2 is transformed as shown in Fig. 3. This transfor-
mation helps to distinguish clauses used to resolve the
main goal from those used to resolve subgoals and pro-
vides more context within the execution on which to
condition the code transformations.

For each input problem, the Prolog interpreter solves
the problem while building a clause-name tree. _
Whenever a clause C is used to try to refute a goal,
a measurement is made of the cost $C of applying that

clause (say, by measuring CPU time or counting uni-
fications) and refuting its subgoals. If the clause fails,
the name of the failing clause and the cost of attempt-
ing it are stored as data with the tree. If it succeeds,
the name of the successful clause and the cost of find-

ing the solution are stored in the node, and its child
nodes are recursively constructed from the results of

resolving its subgoals. Note that both success and fail-
ure costs are accrued.

Next, the tree is passed to the multi-string TDAG al-
gorithm, one node at a time, in pre-order. In addition
to storing the clause-names as symbols and counting
their successors, we also count the total number of
attempts (successful or otherwise) to use that clause
and the total cost of all such attempts. The TDAG,
therefore, contains enough information to predict the

probability that each clause will successfully resolve a
given subgoal and the expected cost of applying the
clause.

As more input problems are solved and the resulting
clause-name tree statistics are passed to the TDAG,
the accuracy of the information increases. Unfortu-
nately without strong assumptions about the problem
source, there is no theoretically justified way to com-
pute the number of input problems needed to guar-
antee that the TDAG will achieve a given level of ac-

curacy. The practical method I used was to feed the
TDAG some number m of problem results and corn-

1For our implementation second-order program ele-
ments such as negation-by-failure and call were allowed,
but these structures appeared as leaf nodes in the clause-
name tree, without any analysis of their proof structure.
Non-logical constructs like cuts were not allowed.

[CPI] : p(a) .

[CP2] : p(f(X)) <- q(h(X)),p(X) .

[CQI] : q(h(X)).

[CQ2] : q(b) .

CP2

CQI CP 1

Figure 2: A simple clause-name tree. The program is shown on the left with clause labels in square brackets.
To the right is the clause-name tree for the proof of the goal p(f(a)).

[Cl]

[c2]

[C3]

[C4]

[c5]

[C6]

[C7]

[C8]

Figure
ure 2.

: p (a) .

: p{f(X)) <- tail-q(h(X)),tail-p(X).

: tail-p (a) .

: tail-p(f(X)) <- tail-q(h(X)),tail-p(X)).

: q(h(Y)) .

: q(b).

: tail-q (h (Y)) .

: tail-q (b) .

3: Initial transformation of the program in Fig-

pare the results to those of a TDAG built from 3m/2
problem results; if the prediction probabilities differed
significantly, I increased the sample size. The largest
number of problems I needed for learning was 300, so

convergence is reasonably fast.

Summarizing, each node of the TDAG tree contains
the name C of a clause, the number of attempts to

satisfy a goal using that clause, the number of suc-
cessful attempts, the total cost of those attempts, and
the usual TDAG likelihoods for each of its subgoals.

In Fig. 4 we show the structure of a possible TDAG
resulting from executions of the program in Fig. 3, as-
suming that "p" is the predicate of the main goal. The
root node has two successors C1 and C2, the clause

names for predicate p. C1 is a leaf because clause
C1 has no antecedents. C2 has two subtrees, one for
each of its two antecedents. The _tail-q" subtree has

two clauses (C7 and C8) as children. The probability
p(C7) (not shown) estimates the likelihood that clause
C7 will successfully resolve the first subgoal. The cost
$C7 estimates the expected cost of using C7 to refute
the first subgoal of C2 in this context. (Similarly for

C8.)

The other subtree of C2 has two children, C3 and

C4, whose statistics apply to the second antecedent
("tail-p") of C2. Clause C4 is expected to have two
further subtrees below it, corresponding to the two an-
tecedents in that clause.

5 The Optimizer Algorithm

In this implementation the optimizer has available two
program transformations:

• Clause reordering: Change the order in which the
clauses for a predicate p are attempted. For ex-
ample, to solve the tail-q subgoal of clause C2
in Fig. 3, clause C7 will be tried before C8 by
virtue of its position in the program. To reverse
this ordering--but without affecting other calls to
tail-q--we first change clause C2 as follows:
[C2']: p(f(X)) <- g218(hCX)),tail-p(X).

(g218 is a new predicate symbol) and add these
new clauses:

[C9] : g218(b).
[CIO]: g218(hCy)).

Clauses C7 and C8 are unaffected. The new pred-
icate g218 has the same semantics as tail-q ex-
cept for the order of its clauses.

• Unfolding: Resolve an antecedent of one clause
with the head of another, resulting in a new
clause. For example, if clause C3 is the most likely
choice for solving the tail-p subgoal in clause C2,
we can replace C2 by the following two clauses:

[C2.1]: pCfCa)) <- tail-qChCa)).
[C2.2]: p(f(X)) <- tail-q(h(X)),g777(X).

and add the clause:

[Cll]: g777(f(X)) <- tail-q(h(X)),
tail-p(X).

Clause C1 remains unchanged. The new proce-
dure g777 is derived from tail-p but omits the
clause already unfolded into C2.

Decisions about which transformations to apply and
where are based on the TDAG data collected dur-

ing the learning phase. Referring to Fig. 4, sup-
pose that in the TDAG there is a C2 node whose first
subgoal ("tail-q") has clauses C7 and C8 as chil-
dren, with estimates for p(C7), $C7, p(C8), and $C8,
resp. By a well-known result, the optimum ordering

Cl

_ot tai

\Z -°'
C2_ C3

,o,

Figure 4: Sample TDAG structure.

for these two clauses is in decreasing order of the quan-
tity p(Ci)/$Ci. Thus we can quickly find applicable
clause reorderings from the information in the TDAG.
Note that, since clause C8 is attempted only on in-
stances where clause C7 fails, the estimate for p(C8)
is actually an estimate for p(C81 --C7); hence the true
optimum ordering may not always be chosen.

The analysis of unfolding transformations is more dif-
ficult, and most easily described by example. The
utility of unfolding come partly from the economy of
combining steps and partly from changing the order
in which subgoals are resolved with their clauses. In
Fig. 3, for example, when clause C2 is invoked and
its two subgoals are resolved, the clauses are tried
in the following order: (C7, C3), (C7, C4), (C8, C3),
(C8, C4). But if clause C3 is unfolded into the second
subgoal as in the above example, this order becomes:
(C7, C3), (C8, C3), (C7, C4), (C8, C4). The risk is
that unification costs will increase when all subgoals
fail since there is an additional clause in the procedure.

Whether the unfolding will improve the expected cost
of the program is important to predict with high confi-
dence, since (unlike clause reorderings) unfoldings can-
not be undone later by our optimizer.

Consider the unfolding example above, where C3 is
unfolded into the second antecedent of C2. After the

unfolding, the TDAG structure of Fig. 4 will change
to that shown in Fig. 5. As a result, the expected cost
$Root of the root node will also change. In both cases
the statistics of C1 play an identical role, so we can

ignore this clause in the calculations. Before unfold-
ing, the expected cost of clause C2 is $C2, a measured
quantity. After unfolding, the expected cost of the
C2.1 and C2.2 clauses is $C2.1 + (1 - p(C2.1))$C2.2.
The values of the likelihood p(C2.1) and the costs
$C2.1 and $C2.2 are, of course, not known quanti-
ties, but they can be predicted approximately from
available TDAG measurements.

Let us illustrate with the case ofp(C2.1). (1-p(C2.1))
is the probability that clause C2.1 fails. This can hap-
pen if the head of the clause does not unify with the
p(...) goal, or if the antecedent (tail-q) fails. C2.1
will fail to unify with the goal if either the more gen-
eral clause C2 will not unify or if C2 unifies only to

have the subgoal C3 fail. Both these likelihoods can
be estimated from the TDAG statistics: p(C3) is a
measured quantity; and if C2 was attempted, say, 100
times and C7 only 75 times, then we infer that 25 times
out of 100 the clause C2 failed due to non-unification

of the head with the subgoal, so the probability that
C2 fails to unify is 0.25. Similarly we can infer from
the TDAG statistics the likelihood that the first an-

tecedent of C2.1 (tail-q) fails. This antecedent is
stronger than the tail-q antecedent of C2 since the
substitution a = X has been applied to it. In Fig. 4, if

we attempted C2 100 times, C7 75 times, and C3 only
10 times, then out of 75 times, we infer that the first

subgoal (tail-q) succeeded only 10 times; hence the
failure probability is about 65/75. Multiplying this by
the likelihood that C3 fails to unify gives us our esti-
mate of the likelihood that the tail-q subgoal of C2.1
fails.

Details apart, the point is that the TDAG statistics
have the data necessary to compute the expected cost

of solving the goal after the unfolding and to predict
whether the unfolding will be beneficial. If the esti-
mated cost of $Root with the unfolded clauses is lower
than that without the unfolding, the optimizer goes
ahead with it. The number of clauses for the unfolded

predicate (p in this example) will increase by one; the
fallback case----clause C2.2 in our example---must be

present to preserve the semantics in case the unfolded
clause (C2.1) fails. When there are more than two
clauses for a predicate, deciding where in the list of
clauses to place the fallback case is problematic. My
approach was to place it last in the list of clauses and
let clause reordering in the next pass determine its best
position.

6 The Learn-Optimize Cycle

We have seen how the learning element collects statis-
tics from program executions and incrementally builds
a TDAG that can predict the optimal clause orderings
at various points of the search and find advantageous
unfolding transformations. The dynamic optimization
process for a program is an alternating cycle of learn-
ing and optimizing passes: learning from sample exe-
cutions, then transforming the program, learning from
sample executions of the transformed program, trans-
forming again, and so forth. The cycle stops when the
optimizer can recommend no further transformations.

Two policies govern the choice of transformations dur-
ing each cycle. First, clause reordering has priority
over unfolding transformations. If according to the

7

c1

C8

Figure 5: TDAG structure of Fig. 4 after unfolding
clause C2.

TDAG the clauses for a particular subgoal are not in
optimal order, and simultaneously one of the clauses is
a candidate for unfolding, then the optimizer will per-
form only the clause reordering transformation. (An
exception is the case where a clause has likelihood one
in solving a subgoal; in this case, both the reorder-
ing and the unfolding can be performed.) The reason
is that the reordering may affect the statistics used to
evaluate the potential unfolding transformation, so the
clauses should be in the right order before unfolding
any of them.

Second, priority is given to transformations at nodes
closest to the root. If a transformation is applied to a
node on one pass of the cycle, no descendents of that
node are transformed on the same pass. For example,
if in Fig. 4 we reorder clauses C1 and C2, then any
reordering of clauses C7 and C8 will have to wait until
the next pass, even if the TDAG statistics currently
recommend that C8 should be first.

The result of these two policies is that optimizations
tend to occur deeper in the TDAG with each cycle, and
thus the number of transformations performed tends
to increase with each cycle. As noted above, several
learn-optimize passes are used instead of one because a
transformation at a TDAG node changes the statistics
of the nodes below it and, as a result, the potential

utility of any transformations at those deeper nodes.

Each transformation increases the number of clauses in

the Prolog program, and over the entire cycle the pro-
gram size may increase several fold. This is not a prob-
lem since program performance depends hardly at all
on the size of the program. In the Prolog used for the
experiments, clauses were retrieved from the database
by a hash table indexed by the predicate functor. In
some Prolog implementations, however, clauses are in-
dexed by both the predicate functor and the leftmost

functor of the first argument; in this case, the TDAG

nodes would likewise be labeled by the pair of func-
tor names, rather than by the predicate functor name
alone.

Recall that the cycle terminates when the optimizer
finds no justifiable transformations in the TDAG. If
h is the maximum height of the TDAG tree, and if
the sample size of the learning phase is large enough,
then with high likelihood 3h is the maxinmm expected
number of learn-optimize passes in the cycle. The fac-
tor of 3 arises from the possibility that, at any node

C, a reordering of its child clauses may occur on one
pass, an unfolding on the next, and a further reorder-
ing of the fallback clause from the unfolding on the
one after that. On subsequent passes, transformations
may occur at descendents of C but are not expected
at C. There is also a statistical chance that the proba-
bility of success and the expected cost of attempting a
clause may change a lot when the order of the clause is
changed, so that a clause reordering may be reversed
on the next pass. In my experiments, however, this
did not occur; and in fact twelve passes were the most
required for any program, compared to the theoretical
limit of 21.

7 Experimental Results

To evaluate this dynamic optimization method, I mod-
ified a Prolog compiler so that the programs it compiles
will construct their clause-name trees and collect the

cost statistics as part of the search for a refutation of
the input goal. (In the tests, I used both unification
counts and CPU time as cost measures, with compa-
rable results for the two measures.) After finding each
solution to the input goal, the programs present the fi-
nal clause-name tree to a multi-string TDAG learning
element. More than ten Prolog programs of varying
sizes were used to test the system. For each program,
a problem generator was also constructed to provide a
random set of problems for the (compiled) Prolog pro-
gram to run. In most cases the generator was some-
what skewed so that, instead of problems being gener-
ated more or less uniformly by size, some regularities
occured with higher probability. In some cases, the
same program was run with different problem gener-
ators to assess the sensitivity of the optimizer to the
problem source.

Next, the unoptimized program was put through a
learn-optimize cycle. A sample size was empirically de-
termined, as described above. This number was then
used consistently by the learning element, although
the actual set of problems changed on each pass. Af-

ter compiling the program with the modified compiler
and collecting statistics with the TDAG, useful trans-
formations were identified and implemented. Then the
optimized program was recompiled with the modified
compiler, and the learn-optimize cycle continued.

The task of locating and installing the optimizing

8

transformations was done by hand with machine as-
sistance; moreover, the transformations were selected
and installed one at a time, rather than in batches.
This procedure--which ordinarily would (and should)
be entirely automatic-- was adopted as a research tool
to study in detail the performance of the optimizer and
to verify whether each recommended transformation
improved performance as predicted.

Clause reordering transformations are easy to identify
and install, but the procedure for finding and con-
structing good unfolding transformations is slow and
cumbersome. Even with machine assistance, testing
every possible unfolding for its expected utility value
took time, and I felt the need for a simpler rule that

would suggest effective unfoldings more quickly.

I shall describe in detail the results for one program:
the familiar member predicate defining membership in
a list.

/* member(X, Y) <- X is in the list Y. */
[CMI]: member(X, X._).

[CM2]: member(X, Y.Z) := member(X,Z).

This problem demonstrates quite well that costs, not
just probabilities, must be considered during the op-
timization; moreover, both unfoldings and clause re-
orderings played important roles in its optimization.

In this test the list Y was always a list of thirty differ-
ent integers, and the first argument g matched exactly
one of the integers in the list. The problem generator
was constructed so that the target element X occurs
exactly once in the list ¥, at a position more or less uni-
formly distributed between fourth and thirtieth in the
list. In a stream of such problems, it is clear the clause
CM2 will be applied with much greater frequency than
CM1. If, therefore, we chose clauses solely by prob-
ability, CM2 would always be tried before CMI, and
the optimizer would reorder the clauses so that clause
CM2 precedes CM1. In such a program the proce-
dure would be first to go through the list to the end
and then backtrack, testing the target against each el-
ement of the list in reverse order. By contrast, the
TDAG determined that in most circumstances the ex-

pected p/$C value of CM1 was about half that of CM2
and declined to reorder these two clauses.

For this problem the sample size was 200 problem in-
stances. Eight rounds of optimization were needed to
produce the final program (given in the appendix) with

eighteen clauses.

Examining the optimized program, we note that
member was unfolded so that the search for the tar-

get element g begins with the fourth element of the
list (clause M1). Clauses M2 through M4 will never be
needed with this problem generator, but the optimizer
can't know that and includes them for completeness.

The recursivepredicatetail-member (MS and M6) re-

mained unchanged throughout the cycle. Note, how-

ever,that member calls,not tail-member, but d151
and othernewly createdpredicatesasa resultofclause

reorderingsand unfoldingsin the TDAG, beforeitfi-

nallycallstail-member inclauseMI4.

The three-clause predicate d151 is a copy of
tail-member thatwas produced by a reordering(plac-

ing Mi6 first)and and an unfoldingthat skipsover two
more elements of the listbefore resuming the search.

dleSa and dl6Sb are copies of tail-member and serve
only to provide context for d165c, for which the usual
clause ordering is reversed. This reordering--whose
utility was well justified by a reduction in average
runtime---was quite unexpected and apparently the re-
sult of an unintended statistical pattern in the problem
generator.

The program size grew from two clauses to eighteen af-
ter three unfoldings and three reorderings. Five other
clauses generated during the cycle ended up being un-
referenced as a result of subsequent transformations
and were therefore eliminated. Average costs for this
generator were reduced by 18.5% for unifications and
17.2% for CPU time.

Note, finally, that all these changes are truly dynamic
optimizations: the member source code alone will not
point to these changes as effective. The examples--
specifically, the statistical properties of the examples--
are essential for understanding the utility value of
these transformations to the original two-clause pro-
gram.

Space will not permit describing all our other experi-
ments, but let us mention a few highlights:

• The implemented-by program used by several

researchers,e.g., (Shavlik, 1990; Subramanian

and Feldman, 1990), is notorious for produc-
ing generalization-to-Nanomalies inexplanation-

based generalization.In testswith threedifferent

problem generators,the optimizer produced only

clausereorderings,never any unfoldings.Cost im-
provements ranged from about 4% percent for a

generator with littleskew to about 25% for one

with strong skew.

• ¢olor is a brute-forcegraph-coloringalgorithm

using an unsophisticatedbacktracking search al-

gorithm. Problems were generated more or less

at random. No performance improvement was

expected, and none was observed, despite sev-
eralclause reorderingsand one unfolding trans-

formation. Significantly,however, no performance

degradation was observed either.

• The best cost improvements--about 40%--

occurred fora program that parsesa context-free

language. The gainsresultedmainly from unfold-

ingsand take advantage ofstrong patterns inthe

productions ofthe grammar.

Finally, the most striking feature of these experiments
was the robustness of the results: several runs of the

cycle with the same program and generator (but a dif-
ferent random seed for the generator) almost always
resulted in the same sequence of optimizations. I had
a strong sense that optimizer was finding a local mini-
mum for the program's runtime performance, and that
this minimum was not very sensitive to the particular
sequence of the examples. This stands in contrast to
reported results with EBL methods.

8 Summary: the Learn-Optimize

Model

Although the details of this work pertain to dynamic
optimization of Prolog programs, the major idea ap-
plies more generally: dynamic optimization should be-
gin with a learning element that analyzes a sufficiently
large sample for the learning to be reliable, followed
by an optimization phase that bases its changes to the
program on the results of the learning.

By contrast, most previous efforts to apply EBL to
program speedup have been based upon a caching
method: the idea is to save the solutions to individ-

ual problems and reuse them when the problems recur.
The EBG algorithm generalizes the solution somewhat
before caching it, but paradoxically the larger--and
more informative---the solution, the weaker the gen-
eralization (Laird and Gamble, 1990a). This is the
basis for the "generalization-to-N" problems. With
caching comes the necessity for utility estimation: be-
cause of the limited space in the cache and limited
time to search that space, only the most useful chunks

can be retained. Caching also suffers from sensitivity
to the order of arrival of the examples: because a deci-
sion must be made at once whether to save or discard

a solution, unrepresentative problems that occur early
will slow down the program until they can be displaced
by more typical chunks at some much later time.

Our experiments exhibited no generalization-to-N
problems and negligible sensitivity to the input order.
No special _utility evaluation _ has to be added on be-
cause utility analysis is the very core of the method.
The learning element learns what it needs to evaluate
the potential program transformations. In our case,
since the only two transformations were clause reorder-
ing and unfolding, the statistics learned by the TDAG
were those necessary to perform these transformations.

The optimization technique described here is not spe-
cific to Prolog. The same basic method is directly
applicable to any nondeterministic typed-term lan-

guage (Laird and Gamble, 1990b), including lambda-
calculus-based and combinator-based languages. The
relevant characteristic of these languages is that non-
determinism is represented explicitly in the language;
the determinism necessary for consistent computation

is provided by the underlying operational semantics
(e.g., SLD resolution in Prolog). By contrast, impera-
tive languages like C probably would not benefit much
from dynamic optimization, since the nondeterministic
element (search) is not represented as such in the code,
but instead is embedded in if-then-else constructs or
procedure calls.

Before adopting the learn-optimize cycle, I first tried
the approach of modifying the Prolog interpreter to
call the TDAG for search-control advice. Even when

the TDAG always recommended the correct clause, the
overhead of calling the learning element overwhelmed
any cost savings, and I was never able to reduce the
average CPU time below that of the unoptimized pro-
gram running without the TDAG. Only then did I
decide to use the TDAG, not for search control, but
for guidance on program optimization. In effect, the
method described in this paper compiles the search-
control information into the program instead of calling
for it at run time.

The procedure described in this paper is a first at-
tempt at dynamic optimization for Prolog and suf-
fers from a number of weaknesses that are being ad-
dressed by continuing research. The decision to pass
the clause-name tree to the TDAG at the conclusion

of a successful search means that only very limited
failure statistics can be collected, and calls to higher-
order predicates (like or and call) are not fully rep-
resented in the TDAG statistics. Also, by evaluating
clause probabilities in the order in which the clauses
occur in the program, the learning algorithm could
recommend a transformation on one cycle and undo
it on the next. (This never occurred in the experi-
ments, however.) But the most unsatisfactory aspect
of this (and related) research is the lack of any charac-
terization of how "optimal _ the resulting program will
be. In the learn-optimize cycle the changes to the pro-
grams are based on a hill-climbing model: the program
performance is expected to improve after each cycle,
and optimization stops only when a local optimum is
reached or TDAG size limits prevent further progress.
There may be circumstances, however, where the truly
optimum program can be reached only after transfor-
mations that temporarily worsen its performance; in
such cases no hill-climbing method will find such an
optimum.

In this paper we assume that the problem generator
chooses problems independently from a distribution--
i.e., the choice of the next input does not depend in
any way upon previous inputs. One can imagine cir-
cumstances where this assumption does not hold, and
yet our method provides no way to carry state infor-
mation from one problem to the next. The TDAG can
easily retain state information from one problem to the
next; not so easy, however, is incorporating this state
information into the optimized program.

10

9 Acknowledgments

My thanks to Wray Buntine, Oren Etzioni, Smadar Kedar,
Steve Minton, Ron Saul, and the reviewers for their sug-
gestions, and to Peter Norvig who provided a version of
his elegant Prolog (Norvig, 1991). Part of this work was
conducted during my stay at the Electrotechnical Labora-
tory in Tsukuba, Japan. My thanks to Dr. Taisuke Sate
and the other members of the Machine Inference Section

at that laboratory. This research was partially supported

by the National Science Foundation (INT-9008726).

References

Abe, N. and Warmuth, M. 1990. On the computational
complexity of approximating distributions by probabilis-
tic automata. In Prec. 3rd Workshop on Computational

Learning Theory.

Bell, T. C.; Cleary, J. G.; and Witten, I. H. 1990. Text

Compression. Prentice Hall, Englewood Cliffs, N.J.

Etzioni, O. 1990. Why PRODIGY/EBL works. In Pro-

ceedings, AAAI-90. American Association for Artificial

Intelligence. 915-922.

Gooley, M. and Wah, B. 1989. Efficient reordering of

Prolog programs. IEEE Trans. on Knowledge and Data

Engineering 1:470-482.

Gratch, J. and Dejong, G. 1991. A hybrid approach to
guaranteed effective control strategies. In Prec. 8th In-

ternational Workshop on Machine Learning. 509-513.

Greiner, R. and Orponen, P. 1991. Probably approxi-

mately optimal derivation strategies. In Proceedings _nd
International Conference, Knowledge Representation and

Reasoning. 277-288.

Greiner, R. 1989. Towards a formal analysis of EBL.
In Prec. Sixth Int. Machine Learning Workshop. Morgan
Kaufmann. 450-453.

Laird, P. and Gamble, E. 1990a. EBG and term-rewriting
systems. In Proceedings, First International Workshop on

Algorithmic Learning Theory, Tokyo, Japan.

Laird, P. and Gamble, E. 1990b. Extending EBG to term-
rewriting systems. In Proceedings AAAI-90. American
Association for Artificial Intelligence.

Laird, P. 1988. Efficient unsupervised learning. In Hans-
sler, D. and Pitt, L., editors 1988, Proceedings, let Corn-

put. Learning Theory Workshop. Morgan Kaufmann.

Laird, P. 1991. Explanation-based generalization: the-
ory meets experiment. Technical Report FIA-91-01-10-7,
NASA Ames Research Center, AI Research Branch.

Laird, P. 1992. Discrete sequence prediction and its ap-

plications. In Prec., 9th National Conference on Artificial

Intelligence. AAAI.

Letovsky, S. 1990. Operationality criteria for recursive

predicates. In Proceedings, AAAI-90. American Associa-
tion for Artificial Intelligence. 936-941.

Maxkovitch, S. and Scott, P. D. 1989. Utilization filter-

ing: a method for reducing the inherent harmfulness of
deductively learned knowledge. In Eleventh IJCAI. IJ-
CAl. 738-743.

Minton, S. 1989. Learning effective search control knowl-

edge: an explanation.based approach. Kluwer Academic
Press.

Norvig, P. 1991. Paradigms of A.L Programming: Case
Studies in Common LISP. Morgan Kaufmann.

Prieditis, A. and Mostow, J. 1987. Prolearn: Towards a

Prolog interpreter that learns. In Proceedings of AAAI-

87. Morgan Kanffman.

Segre, A.; Elkan, C.; Scharstein, D.; Gordon, G.; and

Russell, A. 1992. Adaptive inference. In Chipman, S. and

Meyrowitz, A., editors 1992, Machine Learning: Induc-

tion, Analogy, and Discovery. Kluwer Academic.

Shavlik, J. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39-70.

Smith, D. E. and Genesereth, M. R. 1985. Ordering con-

junctive queries. Ordering conjunctive queries 26.

Sterling, L. and Shapiro, E. 1986. The Art of Prolog.
M.I.T. Press.

Subramanian, D. and Feidman, R. 1990. The utility of
EBL in recursive domains. In Proceedings, AAAI-90.

American Association for Artificial Intelligence. 942-949.

TamaXi, H. and Sate, T. 1984. Unfold/fold transforma-
tion of logic programs. In _nd International Logic Pro-

grarnrning Conf.

Yamada, S. and Tsuji, S. 1990. Computing the utility of

EBL in a logic programming environment. In Proceedings,

JSAI National Meeting. Japanese Society for Artificial In-

telligence. 103-106. (In Japanese).

Yamada, S. 1992. Computing the utility of EBL in a

logic programming environment. J. of Japanese Society

for Artificial Intelligence 7(2):309-319. (In Japanese).

Appendix: Optimized member program

[M1] :

[M2] :
[M33:

_q4] :

D_5]:
D_6]:

_7]:
1_8] :
D49]:

D41o] :
[Mll]:

[M12] :

Imp] :
L'ql4] :

[M16] :
[_16]:
[H17] :

[MI8] :

member(Item, [X1.X2,X3 I Rest]) :-
dial(Item, Rest).

member(Item, [Item . Rest]).
member(Item, IX . Rest]) :-

d173(ltem, Rest).
member(Item, [X1,X2 i Rest)) :-

d173(Item, Rest).
tail-member(Item, [Item I Rest]).

tail-member(Item, [X I Rest]) :-
tail-member(Item, Rest).

d173(Itom, [Item I Rest])).

d165a(Iten, [Item I Rest]).
d165a(Itsm, [I I Rest]) :-

d165b(Item, Rest).
d16Sb(Item, [Item i rest]).
d165b(Item, (X I Rest)) :-

d165c(Item, Rest).

d165c(Item, IX I Rest]) :-
d276(Itom, Rest).

dl6Sc(Item, [Item I Rest]).
d276(Itsm, [X IRest]) :-

tail-member(Item.Rest).
d276(Item, [Item I Rest]).

dlSl(Item, [Item I Rest]).
d151(Item. [X1, X2 I Rent]) :-

d165a(Item, Rest).

d151(Item, [X J Rest]) :-

d173(Item, Rest).

